

Phos-tag[®] Chemistry in Solution

1) Anion selectivity indexes of Phos-tag[®] in H₂O

Phos-tag[®] 101 series (+3 ion) selectively captures a phosphomonoester dianion (-2 ion). The electric charge of the Phos-tag[®] 101–phosphomonoester^{2–} complex is +1, which is suitable for MALDI-TOF Mass analysis. Binding of borate, nitrate, and perchlorate is negligible in H₂O at room temperature.

2) Species distribution of Phos-tag[®] & phenyl phosphate

Species distribution for an aqueous solution of 10 μ M Phos-tag[®] 101 and 10 μ M phenyl phosphate at 25 °C with I = 0.10 (NaNO₃).

In the low pH region (<3), Phos-tag[®] 101 series dissociate into two zinc ions and the protonated ligand. In the high pH region (>9), Phos-tag[®] 101 series exist almost in hydroxide-bound form. Monoanionic $ROPO_3H^-$ and neutral $ROPO_3H_2$ have much less affinity to Phos-tag[®] 101 series. At pH >6, phosphomonoesters exist almost in dianionic form (two pK_a values *ca*. 6 and <2).